HYDROSTATIC EFFECT IN BINARY MIXTURES CLOSE
TO THE CRITICAL STATE OF VAPORIZATION

I. A, Fakhretdinov and A. V. Chalyi ) UDC 536.423.,1

The effect of the external field on the structure of the liquid—vapor transition layer of a binary
mixture in the critical state of vaporization is investigated.

The strong increase in the susceptibility of a binary mixture to external influences close to the critical
state of vaporization is, as is well known, the reason for the considerable spatial nonuniformity of the proper-
ties of the system along the direction of the external field (e.g., the gravitational field). This phenomenon has
been called the hydrostatic effect. Two forms of hydrostatic effect can be distinguished: 1) the macrohydro-
static effect and 2) the microhydrostatic effect. The macrohydrostatic effect produces nonuniformities of size
greater than the correlation radius of the fluctuations of the characteristic order parameter (in this case fluc-
tuations in the total density of the mixture), while the system is assumed to be uniform within the limits of the
correlation radius, The microhydrostatic effect produces nonuniformities in regions comparable with the cor-
relation radius [1]. It should be noted that the microhydrostatic effect is fairly noticeable in narrow regions
close to the level with critical density and it affects those physical quantities which determine the properties
(surface tension, densify proile, etc.) of the transition layer between the liquid and vapor (the interface).

The macrohydrostatic effect in binary mixtures close to the critical state of vaporization has been con-
sidered in [2, 3] using the classical theory of phase transitions, and in [4, 5] using the scale equation of state
[6]. The structure of the transition layer in binary mixtures has been investigated in {7] without taking into
account the gravitational field. The microgravitational effect in binary solutions has been studied by statisti-
cal methods in [8].

In this paper we will consider the hydrostatic effects and the structure of the transition layer of a binary
mixture close to the critical state using the Landau—Ginzburg Hamiltonian generalized to the case of a binary
mixture, and the approximate theory of the renormalization group [9].

We will write the model Landau— Ginzburg Hamiltonian for a binary mixture with component densities p;
(i =1, 2) close to the critical state of vaporization in an external field in the form [10]

Hoge{Ap} = ydl‘ {D (x) [vAp (N + R (T, ){Ap (NP - U (v, 0)[Ap ()]* — ZAp (r)}, @)

where Ap(r) = p(r)— {(p(r)) is the local deviation of the total density of the binary mixture p = 9y + p, from the
mean value at the point r, and x = p;/p is the concentration of the mixture. The quantities R(r, x) and U(r, %)
are related to Rj and Uj of the pure components by means of expressions, explicit forms of which are given in
[10]. The nonlocal properties of the system close to the crifical state are described by the gradient term
D(x)[VAp(r)]?, where the parameter D(x) is related to the radius of intermolecular interaction in the mixture,
The term ZAp(r) defines the action of the external field on the system, Here Z = pogh/P, is the field variable,
pe and Pg are the critical values of the density and pressure of the mixture, h is the height measured from the
critical level, T =[T—T¢(X)]1/T¢(x); T¢ is the critical temperature,

We will consider the macrohydrostatic affect using Hamiltonian (1). It is well known that the nonlocal
term ~ [VAp(r)]’ is of the same order as the other terms of Hamiltonian (1) only in a small region comparable
with the correlation radius Re., When considering the macrohydrostatic effect, which is important outside this
region, the term D[VAp(r)]? in (1) can be neglected. Then, from the condition
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we obtain the following equation for the equilibrium value of the order parameter Apy = (0—pc)/oc:
2R (v, x) Apy (Z) +-4U (v, x)[Apy (2)1*—Z = 0. @)
The solution (3) has the form
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We recall that expression (4) only holds for regions Z > Z;, where Z is the thickness of the interface, whose
dimensions will be determined below. From (4), taking info account the renormalization of the parameters R
and U of the Hamiltonian, which follows from the approximate theory of the Wilson renormalization group [9,
10], at temperatures T > T we have
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for a direction isomorphous with the critical isochore which satisfies the condition (R/6U) » (Z/8U)°,
Apy (Z, x) ~Z"F+eB) ()

for the critical isotherm. Here € = 4 — d, where d is the dimensionality of the space, v = 0.6; B = 0.3 are the
critical indices, and C(x) is a parameter which depends on the concentration and is determined in [10]. Ex-
pressions (5) and (6) correctly describe the experimental results for the density profile in the critical binary
mixtures in a gravitational field and differ considerably from the corresponding results of the classical theory
of the macrohydrostatic effect [2].

Consider the structure of the liquid—vapor transition layer of a binary mixture in the region of the criti-
cal state of vaporization, We will first obtain an expression for the density profile in the interphase when there
is no external field, To do this we will start from the Hamiltonian, which has form (1), in which we take as the
expansion parameter the quantity (8pi—Apg), which specifies the local variation in the order parameter of the
mixture taking into account the effects of spatial dispersion (Apj is the order parameter in the interface, and
Ap, is the value of the order parameter outside the interface, i.e., ~ [VApil?) ignoring the term. The effective
Hamiltonian (1) with this expansion parameter describes the total variation in the energy of the system with the
"inclusion" of the nonlocality. The equilibrium value of (Apj—Apg) is found from condition (2), which with (1)
leads to the Euler equation, which has the form [11]

—D[yAp;1* + R(Ap; — Apy)® + U [Ap; — Apg]* = const. (N
We will assume that the interface is concentrated in a plane-parallel layer situated perpendicular to the Z axis,
The density distribution in the interface will depend only on Z and VAp = dAp/dZ. As Z — = Apj = Apy, VAp =

0, whence we obtain the zero value for the integration constant in (7). Taking this into account we can rewrite
(7) in the form

2
_D (%i ) + R[Ap; — Apyl? + U[Ap; — Apyl* = 0. ®)

Solving the differential equation (8) for T < T¢ and the boundary condition Apj(0) = 0, we obtain the following
expression for the density profile in the interface when there is no gravitational field:

Api(Z)zApo{l-—-]/l—thzl/:—————g—Z}’ | (9)

where Ap, =VR7U. It follows from (9) that when Z = 0, Apj = 0, and as Z — = Ap;j = Ap,. The equation obtained
differs from the expression for the interface profile

"R
Ap = Ap, th l/——ﬁl, (10)

obtained in (7, 11}, The difference is due to the fact that when calculating the structure of the transition layer
in [7, 11] the approximate equation Ap{—Apj ~ [8p}—Ap§]” was used. It is obvious that the density distribution
in the interface of the mixture close to the critical state of vaporization as described by Eq. (9) is the same as
in the case of a pure material,
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We will now consider the structure of the interface in the region of the critical state of vaporization tak-
ing the gravitational field into account., In this case the equation for the equilibrium value of Ap; has the form
@?(Api— Apy)
dze

D — R (Apj — Apy) — U (Ap; — Apy)’ = —Z, 1)
where Apy(Z) is the value of the order parameter in the gravitational field outside the interface. We will ob-
tain a solution of this second-order nonlinear nonuniform differential equation for a number of limiting direc-
tions. In the neighborhood of the critical isochore [R »> U (Api—Apo)z] the cubic term in (11) can be neglected,
after which, for T > T, the solution of Eq. (11) takes the form

== —_— VA
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The constants Cy and C, are found from the condition that when Z = 0, Ap; = 0, Taking into account the fact
that outside the interface Apy = Z/R, we can rewrite (12) in the form

_ 2z 1
R RvR/D

To obtain the thickness of the interface Z, and the constant C;, we will use the following conditions, which were
used previously in [12] to calculate the thickness of the interface of a single-component liquid at the critical
point:

shY/R/IDZ + 2C;shV'R/D Z. 13

14

Ap; lz,—0 = B0 17,400 &
AZ |z0  dZ |70

ehoi | _dde| 6
dZ® |z,—o  dZ% iz,+0

Condition (16) is necessary in order to find the value of the displacement of the density Am from the zero value
obtained when extrapolating solution (5) from the region outside the interface at the critical level Z = 0, Solv~-
ing the system of equations obtained from (13) and (14)-(16) for C;, Am, and Z;, we obtain
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Smce R ~ 7(x)Y, where y = 1.25, it follows from an analysis of Eq. (19), which holds in the region R > UApi—
Apo) , that as one approaches the critical state of vaporization of the binary mixture the thickness of the inter-
face approaches infinity, as in [7], i.e., in the neighborhood of the critical isochore the effect of the external
field on the thickness of the interface is negligible, But comparison of Egs. (9) and (17) shows that a gravita-
tational field leads to a considerable change in the density profile of a binary mixture in the interface.

In the neighborhood of the critical isotherm [R > U(Apj— Apo)z] we have for Apj a nonlinear differential
equation which is difficult to solve. But in this case the difference between the densities of the liquid and gas
phases is small, while the thickness of the transition layer is fairly large, so that we can assume that (Ap;—
Apy) in the interface is a smooth function, We then have the approximate equation d(ap;—Apy)/dZ = (Ap;—Apg)/
L. As a result, Eq. (11) for the critical isotherm can be rewritten in the form

(Aol Apy)

Iz + U (dpi—Apy)® = Z. (20)

Here Apy = (Z/U)1/ 3 is the value of the order parameter outside the interface, while L has the same order of
magnitude as the thickness of the interface Z,. Solving (20) we obtain
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We will use the following approximation to obtain the thickness of the interface. As one moves away from the
critical layer, the role of the gradient term in (20) becomes less, as a result of which, in the region of the
interface boundary, the following relation holds:

D (Ap; — Apy)
L2 ’

The value of the density at the interface boundary can then be obtained from (20) by the method of successive
approximations, which gives

U (Ap;—Apg)® >

Z \13 D
= () |2 o] “
Taking L = Z,, we use condition (14) and obtain the following expression for the thiclkness of the interface:
D 38
Zy=2 (3—{1—1-7—3-) . 23)

Assuming that D = 10716 cm?, pc%/Pc ~ 10-% em™!, and U = 1, we obtain from (23) that the thickness of the in-
terface has the value Zo ~ 10~ cm,

Analysis of expression (23) shows that in the neighborhood of the critical isotherm the thickness of the
interface is mainly determined by the gravitational field of the earth and takes the finite value Z, = 10-0-2) om,
This result differs radically from the conclusions arrived at in [7], in which calculations of the transition-
layer thickness ignoring the external field led to the result Z; — © when T = T,. Hence, for a binary mixture
gituated in an external field in the temperature region R > U(Ap; —Apo)z, when T — T, the thickness of the
liquid—vapor transition layer increases, but, beginning at a certain temperature, which satisfies the inequality
R « U(Api—Apo)z, the rate of increase of the interface decreases, and at a critical point Z; takes a finite value
which depends only on the gravitational field and the concentration of the mixture., This is due to the fact that
in the temperature region R « U(Api—Apo)2 the gravitational field begins to have a considerable effect on the
properties of the interface, and at the critical point itself all the properties of the transition layer are due to
the gravitational field.

NOTATION
Heff is the effective Landau—Ginzburg Hamiltonian;
pi is the density,
i is the component;
p is the total density of the binary mixture;
b 4 is the concentration of the mixture;
Ap is the fluctuation in the total density of the mixture;
D, R, U are the parameters of the Hamiltonian Heff;
Z is the dimensionless field variable;
T is the dimensionless temperature variable;
h is the height measured from the critical level;
Pe is the critical density;
P, is the critical pressure;
Apy is the order parameter outside the interface;
Apg is the order parameter inside the interphase;
Zy is the thickness of the interface;
€ is the departure of the dimensionality of the space from 4;
d is the dimensionality of space; and v, B, y are the critical indices.
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HEAT EXCHANGE IN THE FLOW OF A GAS
SUSPENSION IN A LONG HORIZONTAL
PIPE

Yu. Ya. Pechenegov and V., G. Kashirskii UDC 536,244

The results of an experimental investigation of the heat exchange of a gas-suspension stream in
different lengths of horizontal pipes are presented.

It is known {1] that two-phase streams of the gas—solid-particle type are distinguished by a number of
high qualities as the heat-transfer agent and working substance in power engineering, The inadequate degree
of study and the complexity of the mechanism of heat-exchange processes in the flow of such streams result in
the necessity of the systematic accumulation of test data,

The results of an investigation of heat exchange in the motion of a gas suspension in a horizontal pipe are
presented in the report being offered. Air served as the carrier medium of the stream, while particles of
white marble 110-220 um in size were used as the solid phase.

The investigation* was carried out on an experimental installation for which a schematic diagram and
the measurement procedure was described in [2], But in contrast to [2], the start-up and heated sections
were made of one common pipe without joints or connections, The inner diameter of the pipe was 14 mm,
The heating was accomplished with radiative electric furnaces in sections on a pipe length of 4 m.

The separate determination of the transferred heat flux for the sections from the difference in the power
supplied and lost through the thermal insulation of the furnaces made it possible to find in each test the char-
acteristics of the heat exchange for different pipe lengths x =1, 2, 3, and 4 m.

In order to study the influence of the dynamic conditions of entrance of the stream on the heat exchange
we provided for the delivery of solid particles to the carrying air at distances of 0,07, 0.3, 0.75, and 1,37 m
from the heated section. The start-up section had special fitting in its upper part for this. A calculated esti-
mate of the velocity of the solid particles at the entrance to the heated section, made on the basis of a one-di-
mensional flow model, showed that with such start-up lengths under the conditions of the experiments the par-
ticle velocity was about 0.2-0.85 of the velocity of the transporting gas.

The investigation was carried out at flow-rate concentrations of the solid phase of from 0.17 to 8 kg per
1 kg of air. The Reynolds number of the gas was varied in the interval of Rew;dq = 1950-18,000. In this case
the transportation of the particles was stable with a stable drop of stream pressure over the pipe length in each
test. The stream temperature at the entrance to the heated section was in the range of t{; = 10-60°C. The wall
femperature along the length of the pipe was kept nearly constant and was varied from 130 to 690°C from test
to test. Measurements in the cross sections x/d = 35.7 and 207 showed that it alsohardly varied overtheperim-
eter of the pipe in each test,

*Engineer V. 1. Rednikov took part in conducting the tests.
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